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Abstract. Randomized search heuristics, among them randomized local
search and evolutionary algorithms, are applied to problems whose struc-
ture is not well understood, as well as to problems in combinatorial op-
timization. The analysis of these randomized search heuristics has been
started for some well-known problems, and this approach is followed
here for the minimum spanning tree problem. After motivating this line
of research, it is shown that randomized search heuristics find minimum
spanning trees in expected polynomial time without employing the global
technique of greedy algorithms.

1 Introduction

The purpose of this paper is to contribute to the growing research area where
randomized search heuristics are analyzed with respect to the expected time
until they consider an optimal search point. Such an approach should support
the understanding how these heuristics work, should guide the choice of the free
parameters of the algorithms, and should support the teaching of heuristics. This
is a growing research area, some general results can be found in Papadimitriou,
Schäffer, and Yannakakis (1990) for randomized local search and Beyer, Schwefel,
and Wegener (2002) and Droste, Jansen, and Wegener (2002) for evolutionary
algorithms.

Search heuristics are mainly applied to problems whose structure is not well
understood but the analysis has to start with problems whose structure is well
understood. One cannot hope to beat the best problem-specific algorithms on
these problems. Hence, the main purpose is to study the behavior of randomi-
zed search heuristics which find many applications in real-world optimization
problems. For combinatorial optimization, this approach has been started only
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recently. There are results on sorting as the minimization of unsortedness and
on shortest paths problems (Scharnow, Tinnefeld, and Wegener (2002)), on ma-
ximum matchings (Sasaki and Hajek (1988) for simulated annealing and Giel
and Wegener (2003) for randomized local search and evolutionary algorithms),
and on minimum graph bisections (Jerrum and Sorkin (1998) for the Metropolis
algorithm).

Here we study the well-known problem of computing minimum spanning trees
in graphs with n vertices and m edges. The problem can be solved by greedy
algorithms. The famous algorithms due to Kruskal and Prim have worst-case run
times of O((n + m) log n) and O(n2), respectively, see any textbook on efficient
algorithms, e.g., Cormen, Leiserson, and Rivest (1990). Greedy algorithms use
global ideas. Considering only the neighborhoods of two vertices u and v, it
is not possible to decide whether the edge {u, v} belongs to some minimum
spanning tree. Therefore, it is interesting to analyze the run times obtainable by
more or less local search heuristics like randomized local search and evolutionary
algorithms. One goal is to estimate the expected time until a better spanning tree
has been found. For large weights, there may be exponentially many spanning
trees with different weights. Therefore, we also have to analyze how much better
the better spanning tree is. This is indeed the first paper where the expected
fitness increase is estimated for problems of combinatorial optimization.

As already argued, we do not and cannot hope to beat the best algorithms for
the minimum spanning tree problem. This can be different for two generalizati-
ons of the problem. First, one is interested in minimizing the weight of restricted
spanning trees, e.g., trees with bounded degree or trees with bounded diame-
ter. These problems are NP-hard, and evolutionary algorithms are competitive,
see Raidl and Julstrom (2003). Second, one is interested in the multi-objective
variant of the problem. Each edge has k weights, and one looks for the Pareto
optimal spanning trees with respect to the weight functions, see Hamacher and
Ruhe (1994) for the general problem and Zhou and Gen (1999) for the design
of evolutionary algorithms. Many polynomially solvable problems have NP-hard
multi-objective counterparts, see Ehrgott (2000). None of these papers contains
a run time analysis of the considered search heuristics. We think that it is essen-
tial to understand how the heuristics work on the unrestricted single-objective
problem before one tries to analyze their behavior on the more difficult variants.

After having motivated the problem to analyze randomized search heuristics
on the minimum spanning tree problem, we give a survey on the rest of this
paper. In Section 2, we describe our model of the minimum spanning tree pro-
blem and, in Section 3, we introduce the randomized search heuristics which
will be considered in this paper. The theory on minimum spanning trees is well
established. In Section 4, we deduce some properties of local changes in non-
optimal spanning trees which are applied in the run time analysis presented in
Section 5. After the discussion of some generalizations in Section 6, we finish
with concluding remarks.
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2 Minimum Spanning Trees

This classical optimization problem has the following description. Given an un-
directed connected graph G = (V, E) on n vertices and m weighted edges, find
an edge set E′ ⊆ E of minimal weight, which connects all vertices. The weight
of an edge set is the sum of the weights of the considered edges. Weights are
positive integers. Therefore, the solution is a tree on V , a so-called spanning
tree. One can also consider graphs which are not necessarily connected. Then
the aim is to find a minimum spanning forest, i.e., a collection of spanning trees
on the connected components. All our results hold also in this case. To simplify
the notation we assume that G is connected.

There are many possibilities how to choose the search space for randomized
search heuristics. This problem has been investigated intensively by Raidl and
Julstrom (2003). Their experiments point out that one should work with so-
called “edge sets”. The search space equals S = {0, 1}m, where each position
corresponds to one edge. A search point s ∈ S corresponds to the choice of all
edges ei, 1 ≤ i ≤ m, where si = 1. In many cases, many search points correspond
to non-connected graphs and others correspond to connected graphs with cycles,
i.e., graphs which are not trees. If all graphs which are not spanning trees get the
same “bad” fitness, it will take exponential time to find a spanning tree when
we apply a general search heuristic. We will investigate two fitness functions w
and w′. The weight of ei is denoted by wi. Let wmax be the maximum weight.
Then wub := n2 · wmax is an upper bound on the weight of each edge set. Let

w(s) := (c(s) − 1) · w2
ub + (e(s) − (n − 1)) · wub +

∑

i|si=1

wi

be the first fitness function where c(s) is the number of connected components of
the graph described by s and e(s) is the number of edges in this graph. The fitness
function has to be minimized. The most important issue is to decrease c(s) until
we have graphs connecting all vertices. Then we have at least n−1 edges, and the
next issue is to decrease e(s) under the condition that s describes a connected
graph. Hence, we look for spanning trees. Finally, we look for minimum spanning
trees.

It is necessary to penalize non-connected graphs since the empty graph has
the smallest weight. However, it is not necessary to penalize extra connections
since breaking a cycle decreases the weight. Therefore, it is also interesting to
investigate the fitness function

w′(s) := (c(s) − 1)wub +
∑

i|si=1

wi.

The fitness function w′ is appropriate in the black-box scenario where the scena-
rio contains as little problem-specific knowledge as possible. The fitness function
w contains the knowledge that optimal solutions are trees. This simplifies the
analysis of search heuristics. Therefore, we always start with results on the fitness
function w and discuss afterwards how to obtain similar results for w′.
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3 Randomized Local Search and the (1+1) EA

Randomized local search (RLS) uses the following mutation operator:
– Choose i ∈ {1, . . . , m} randomly and flip the ith bit.
Here we use the notion “choose randomly” for a choice according to the uni-
form distribution. This operator is not useful for most graph problems. Often
the number of ones (or edges) is the same for all good search points, e. g., for
TSP or minimum spanning trees. Then all Hamming neighbors of good search
points are bad implying that we have many local optima. Therefore, we work
with the larger neighborhood of Hamming distance 2. This mutation operator
has already been discussed for maximum matchings by Giel and Wegener (2003).
Finally, RLS can be described as follows.

Algorithm 1 (Randomized Local Search (RLS))
1.) Choose s ∈ {0, 1}m randomly.
2.) Choose b ∈ {0, 1} randomly. If b = 0, choose i ∈ {1, . . . , m} randomly and

define s′ by flipping the ith bit of s. If b = 1, choose (i, j) ∈ {(k, l) | 1 ≤ k <
l ≤ m} randomly and define s′ by flipping the ith and the jth bit of s.

3.) Replace s by s′ if w(s′) ≤ w(s).
4.) Repeat Steps 2 and 3 forever.

In applications, we need a stopping criterion. Here we are interested in the
expected value of TG, which measures the number of fitness evaluations until s
is a minimum spanning tree. This is the expected optimization time (sometimes
called expected first hitting or passage time) of RLS. Indeed, we will estimate
E(TG) with respect to the parameters n, m, and wmax.

The simple evolutionary algorithm called (1+1) EA differs from RLS in the
chosen mutation operator.

Algorithm 2 (Mutation operator of (1+1) EA)
Define s′ in the following way. Each bit of s is flipped independently of the
other bits with probability 1/m.

This is the perhaps most simple algorithm which can be called evolutionary
algorithm. It is adopted from the well-known (1+1) ES (evolution strategy) for
the optimization in continuous search spaces. In Section 6, we will argue why we
believe that larger populations will be harmful. There it will also be discussed
whether genetic algorithms based on crossover can be useful.

4 Properties of Local Changes of Spanning Trees

Our aim is to show the following. In the rest of this paper we denote by wopt
the weight of minimum spanning trees. For a non-optimal tree s, there are either
many weight-decreasing local changes which, on the average, decrease w(s) by
an amount which is not too small with respect to w(s)−wopt, or there are few of
these local changes which, on the average, cause a larger decrease of the weight.
This statement will be made precise in the following lemma.
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Lemma 1. Let s be a search point describing a non-minimum spanning tree T .
Then there exist some k ∈ {1, . . . , n−1} and k different accepted 2-bit flips such
that the average weight decrease of these flips is at least (w(s) − wopt)/k.

Proof. This result follows directly from results in the literature on spanning
trees. Kano (1987) has proved the following result by an existence proof and
Mayr and Plaxton (1992) have proved the same result by an explicit construction
procedure.

Let s∗ be a search point describing a minimum spanning tree T ∗. Let E(T )
and E(T ∗) be the edge sets of T and T ∗, respectively. Let k := |E(T ∗) − E(T )|.
Then there exists a bijection α : E(T ∗) − E(T ) → E(T ) − E(T ∗) such that α(e)
lies on the cycle created in T by including e into T and the weight of α(e) is not
smaller than the weight of e.

We consider the k 2-bit flips flipping e and α(e) for e ∈ E(T ∗)−E(T ). They
are accepted since e creates a cycle which is destroyed by the elimination of α(e).
Performing all the k 2-bit flips simultaneously changes T into T ∗ and leads to
a weight decrease of w(s) − wopt. Hence, the average weight decrease of these
steps is (w(s) − wopt)/k. �

The analysis performed in Section 5 will be simplified if we can ensure that
we always have the same parameter k in Lemma 1. This is easy if we allow also
non-accepted 2-bit flips whose weight decrease is defined as 0. We add n − k
non-accepted 2-bit flips to the set of the k accepted 2-bit flips whose existence is
proven in Lemma 1. Then we obtain a set of exactly n 2-bit flips. The total weight
decrease is at least w(s) − wopt since this holds for the k accepted 2-bit flips.
Therefore, the average weight decrease is bounded below by (w(s) − wopt)/n.
We state this result as Lemma 2.

Lemma 2. Let s be a search point describing a spanning tree T . Then there
exists a set of n 2-bit flips such that the average weight decrease of these flips is
at least (w(s) − wopt)/n.

When analyzing the fitness function w′ instead of w, we may accept non-
spanning trees as improvements of spanning trees. Non-spanning trees can be
improved by 1-bit flips eliminating edges of cycles. A 1-bit flip leading to a
non-connected graph is not accepted and its weight decrease is defined as 0.

Lemma 3. Let s be a search point describing a connected graph. Then there
exist a set of n 2-bit flips and a set of m − (n − 1) 1-bit flips such that the
average weight decrease of these flips is at least (w(s) − wopt)/(m + 1).

Proof. We consider all 1-bit flips concerning the non-T ∗ edges. If we try them
in some arbitrary order we obtain a spanning tree T . If we consider their weight
decrease with respect to the graph G′ described by s, this weight decrease can be
only larger. The reason is that a 1-bit flip, which is accepted in the considered se-
quence of 1-bit flips, is also accepted when applied to s. Then we apply Lemma 2
to T . At least the same weight decrease is possible by adding ei and deleting a
non-T ∗ edge with respect to G′. Altogether, we obtain at least a weight decrease
of w(s) − wopt. This proves the lemma, since we have chosen m + 1 flips. �
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5 The Analysis of RLS and (1+1) EA for the
Minimization of Spanning Trees

First, it is rather easy to prove that RLS and (1+1) EA construct spanning trees
efficiently.

Lemma 4. The expected time until RLS or (1+1) EA working on one of the fitn-
ess function w or w′ has constructed a connected graph is bounded by O(m log n).

Proof. The fitness functions are defined in such a way that the number of connec-
ted components will never be increased in accepted steps. For each edge set lea-
ding to a graph with k connected components, there are at least k−1 edges whose
inclusion decreases the number of connected components by 1. Otherwise, the
graph would not be connected. The probability of a step decreasing the number
of connected components is at least 1

2 · k−1
m for RLS and 1

e · k−1
m for (1+1) EA.

Hence, the expected time until s describes a connected graph is bounded above
by

em

(
1 + · · · +

1
n − 1

)
= O(m log n).

�

Lemma 5. If s describes a connected graph, the expected time until RLS or
(1+1) EA has constructed a spanning tree for the fitness function w is bounded
by O(m log n).

Proof. The fitness function is defined in such a way that, starting with s, only
connected graphs are accepted and that the number of edges does not increase.
If s describes a graph with N edges, it contains a spanning tree with n−1 edges,
and there are at least N − (n − 1) edges whose exclusion decreases the number
of edges. If N = n − 1, s describes a spanning tree. Otherwise, by the same
arguments as in the proof of Lemma 4, we obtain an upper bound of

em

(
1 + · · · +

1
m − (n − 1)

)
= O(m log(m − n + 1)) = O(m log n).

�

This lemma holds also for RLS and the fitness function w′. RLS does not
accept steps only including an edge or only including two edges if s describes
a connected graph. Since RLS does not affect more than two edges in a step,
it does not accept steps in which the number of edges of a connected graph is
increased. This does not hold for (1+1) EA. It is possible that the exclusion of
one edge and the inclusion of two or more edges creates a connected graph whose
weight is not larger than the weight of the given graph.

Before we analyze the expected time to turn a spanning tree into a minimum
spanning tree, we investigate an example (see Figure 1).

The example graph consists of a connected sequence of p triangles and the
last triangle is connected to a complete graph on q vertices. The number of
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.... Kq

2a 2a 2a2a

3a 3a 3a3a

T1 T2 T3 Tp

2a 2a 2a 2a

Fig. 1. An example graph with p connected triangles and a complete graph on q vertices
with edges of weight 1.

vertices equals n := 2p+ q and the number of edges equals m := 3p+ q(q −1)/2.
We consider the case of p = n/4 and q = n/2 implying that m = Θ(n2). The
edges in the complete graph have the weight 1 and we set a := n2. Each triangle
edge has a weight which is larger than the weight of all edges of the complete
graph altogether. Theorem 1 and Theorem 2 prove that this graph is a worst-case
instance with polynomial weights.

Theorem 1. The expected optimization time until RLS and (1+1) EA find
a minimum spanning tree for the example graph equals Θ(m2 log n) =
Θ(n4 log n) with respect to the fitness functions w and w′.

Proof. The upper bound is contained in Theorem 2. Here we prove the lower
bound by investigating typical runs of the algorithm. We use the following not-
ation. We partition the graph G into its triangle part T and its clique part C.
Each search point x describes an edge set. We denote by d(x) the number of
triangles that are disconnected with respect to the edges chosen by x, by b(x)
the number of bad triangles (exactly one 2a-edge and the 3a-edge are chosen), by
g(x) the number of good triangles (exactly the two 2a-edges are chosen), by c(x)
the number of complete triangles (all three edges are chosen), and by conG(x),
conT (x), and conC(x) the number of connected components in the different parts
of the graph. We investigate four phases of the search. The first phase of length
1 is the initialization step producing the random edge set x. In the following, all
statements hold with probability 1 − o(1).

Claim. After initialization, b(x) = Θ(n) and conC(x) = 1.

Proof. The statements can be proved independently since the corresponding
parts of x are created independently. The probability that a given triangle is
bad equals 1/4. There are n/4 triangles and b(x) = Θ(n) by Chernoff bounds.
We consider one vertex of C. It has n/2 − 1 possible neighbors. By Chernoff
bounds, it is connected to at least n/6 of these vertices. For each other vertex, the
probability to be not connected to at least one of these n/6 vertices is (1/2)n/6.
This is unlikely even for one of the remaining vertices. Hence, conC(x) = 1. �

For the following phases, we distinguish the steps by the number k of flipping
triangle edges and call them k-steps. Let pk be the probability of a k-step. For
RLS, p1 = Θ(n−1), p2 = Θ(n−2) and pk = 0, if k ≥ 3. For (1+1) EA and
constant k

pk =
(

3n/4
k

) (
1
m

)k (
1 − 1

m

)3n/4−k

= Θ(nkm−k) = Θ(n−k).



720 F. Neumann and I. Wegener

For a phase of length n5/2, the following statements hold. The number of 1-steps
equals Θ(n3/2), the number of 2-steps equals Θ(n1/2), and there is no k-step,
k ≥ 3.

Claim. Let b(x) = Θ(n) and conC(x) = 1. In a phase of length n5/2, a search
point y where b(y) = Θ(n) and conG(y) = 1 is produced.

Proof. By Lemma 4, the probability of creating a connected graph is large
enough. Let y be the first search point where conG(y) = 1. We prove that
b(y) = Θ(n). All the 2-steps can decrease the b-value by at most O(n1/2). A
1-step has two possibilities to destroy a bad triangle.

– It may destroy an edge of a bad triangle. This increases the conG-value. In
order to accept the step, it is necessary to decrease the conC-value.

– It may add the missing edge to a bad triangle. This increases the weight by
at least 2a. No triangle edge is eliminated in this step. In order to accept the
step, it is necessary to decrease the conC-value.

However, conC(x) = 1. In order to decrease this value, it has to be increased
before. A step increasing the conC-value can be accepted only if the conT -value
is decreased in the same step at least by the same amount. This implies that
triangle edges have to be added. For a 1-step, the total weight is increased
without decreasing the conG-value and the step is not accepted. Hence, only the
O(n1/2) 2-steps can increase the conC-value. By Chernoff bounds, the number
of clique edges flipping in these steps is O(n1/2). This implies that the number
of bad triangles is decreased by only O(n1/2). �

Claim. Let b(y) = Θ(n) and conG(y) = 1. In a phase of length n5/2, a search
point z where b(z) = Θ(n), conG(z) = 1, and T (z) is a tree is produced.

Proof. Only search points x describing connected graphs are accepted, in par-
ticular, d(x) = 0. Let z be the first search point where T (z) is a tree. Then
conG(z) = 1 and we have to prove that b(z) = Θ(n) and that z is produced
within n5/2 steps. A 1-step can be accepted only if it turns a complete triangle
into a good or bad triangle. Such a step is accepted if no other edge flips. Moreo-
ver, c(x) cannot be increased. In order to increase c(x) it is necessary to add
the missing edge to a good or bad triangle. To compensate this weight increase,
we have to eliminate an edge of a complete triangle. Remember that we have
no k-steps for k ≥ 3. If c(x) = l, the probability of decreasing the c-value is
at least 3l/(em) and the expected time to eliminate all complete triangles is
O(m log n) = O(n2 log n). Hence, n5/2 steps are sufficient to create z. The num-
ber of bad triangles can be decreased only in the O(n1/2) 2-steps implying that
b(z) = Θ(n). �

Claim. Let b(z) = Θ(n), conG(z) = 1, and T (z) be a tree. The expected time to
find a minimum spanning tree is Ω(n4 log n).

Proof. First, we assume that only 2-steps change the number of bad triangles.
Later, we complete the arguments. The expected waiting time for a 2-step flip-
ping those two edges of a bad triangle that turn it into a good one equals Θ(n4).
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The expected time to decrease the number of bad triangles from b to b−1 equals
Θ(n4/b). Since b has to be decreased from Θ(n) to 0, we obtain an expected wait-
ing time of

Θ(n4
∑

1≤b≤Θ(n)

(1/b)) = Θ(n4 log n). (∗)

Similarly to the proof of the coupon collector’s theorem we obtain that the opti-
mization step if only 2-steps can be accepted equals Θ(n4 log n) with probability
1−o(1). Hence, it is sufficient to limit the influence of all k-steps, k �= 2, within a
time period of αn4 log n for some constant α > 0. Again with probability 1−o(1),
the number of 4-steps is O(log n) and there are no k-steps for k ≥ 5. The 4-steps
can decrease the number of bad triangles by at most O(log n). Because of the
weight increase, a k-step, k ≤ 4, can be accepted only if it eliminates at least
�k/2	 triangle edges. Moreover, it is not possible to disconnect a good or a bad
triangle. Hence, a 4-step cannot create a complete triangle. As long as there is
no complete triangle, a 3-step or a 1-step has to disconnect a triangle and is not
accepted. A 2-step can only be accepted if it changes a bad triangle into a good
one. Hence, no complete triangles are created. The 4-steps eliminate O(log n)
terms of the sum in (∗). The largest terms are those for the smallest values of
b. We only have to substract a term of O(n4 log log n) = o(n4 log n) from the
bound Θ(n4 log n) and this proves the claim. �

We have proved Theorem 1 since the sum of all failure probabilities is o(1). �

In the following , we prove an upper bound of size O(m2(log n+log wmax)) on
the expected optimization time for arbitrary graphs. This bound is O(m2 log n)
as long as wmax is polynomially bounded and it is always polynomially bounded
with respect to the bit length of the input. Theorem 1 shows that the bound is
optimal.

Theorem 2. The expected time until RLS or (1+1) EA working on the
fitness function w constructs a minimum spanning tree is bounded by
O(m2(log n + log wmax)).

Proof. By Lemmas 4 and 5, it is sufficient to investigate the search process after
having found a search point s describing a spanning T . Then, by Lemma 2,
there always exists a set of n 2-bit flips whose average weight decrease is at
least (w(s) − wopt)/n. The choice of such a 2-bit flip is called a “good step”.
The probability of performing a good step equals Θ(n/m2) and each of the good
steps is chosen with the same probability. A good step decreases the difference
between the weight of the current spanning tree and wopt on average by a factor
not larger than 1 − 1/n. This holds independently from previous good steps.
Hence, after N good steps, the expected difference of the weight of T and wopt
is bounded above by (1 − 1/n)N · (w(s) − wopt). Since w(s) ≤ (n − 1) · wmax and
wopt ≥ 0, we obtain the upper bound (1 − 1/n)N · D, where D := n · wmax.

If N := �(ln 2) · n · (log D + 1)	, this bound is at most 1
2 . Since the difference

is not negative, by Markov’s inequality, the probability that the bound is less
than 1 is at least 1/2. The difference is an integer implying that the probability
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of having found a minimum spanning tree is at least 1/2. Repeating the same
arguments, the expected number of good steps until a minimum spanning tree
is found is bounded by 2N = O(n log D) = O(n(log n + log wmax)).

By our construction, there are always exactly n good 2-bit flips. Therefore,
the probability of a good step does not depend on the current search point.
Hence, the expected time until r steps are good equals Θ(rm2/n). Altogether,
the expected optimization time is bounded by

O(Nm2/n) = O(m2(log n + log wmax)).

�

Applying Lemma 3 instead of Lemma 2, it is not too difficult to obtain the
same upper bound for the fitness function w′. The main difference is that a good
1-bit flip has a larger probability than a good 2-bit flip.

Theorem 3. The expected time until RLS or (1+1) EA working on the
fitness function w′ constructs a minimum spanning tree is bounded by
O(m2(log n + log wmax)).

Proof. By Lemma 4, it is sufficient to analyze the phase after having constructed
a connected graph. We apply Lemma 3. The total weight decrease of the chosen
1-bit flips and 2-bit flips is at least w(s)−wopt if s is the current search point. If
the total weight decrease of the 1-bit flips is larger than the total weight decrease
of the chosen 2-bit flips, the step is called a 1-step. Otherwise, it is called a 2-step.

If more than half of the steps are 2-steps, we adapt the proof of Theorem 2
with N ′ := 2N since we guarantee only an expected weight decrease by a factor
of 1 − 1/(2n). Otherwise, we consider the good 1-steps which have an expected
weight decrease by a factor of 1 − 1/(2m′) for m′ = m − (n − 1). Choosing
M := �2 · (ln 2) ·m′ · (log D+1)	, we can apply the proof technique of Theorem 2
where M takes the role of N . The probability of performing a good 1-bit flip
equals Θ(m′/m). In this case, we obtain the bound

O(Mm/m′) = O(m(log n + log wmax))

for the expected number of steps which is even smaller than the proposed bound.
�

6 Generalizations

Theorems 1, 2, and 3 contain matching upper and lower bounds for RLS and
(1+1) EA with respect to the fitness functions w and w′. The bounds are worst-
case bounds and one can hope that the algorithms are more efficient for many
graphs. Here we discuss what can be gained by other randomized search heuri-
stics.

First, we introduce more problem-specific mutation operators. It is easy to
construct spanning trees. Afterwards, it is good to create children with the same
number of edges. The new mutation operators are:
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– If RLS flips two bits, it chooses randomly a 0-bit and randomly a 1-bit.
– If s contains k 1-bits, (1+1) EA flips each 1-bit with probability 1/k and

each 0-bit with probability 1/(m − k).

For spanning trees, the probability of a specific edge exchange is increased from
Θ(1/m2) to Θ(1/(n(m − n + 1))). It is easy to obtain the following result.

Theorem 4. For the modified mutation operator, the bounds of Theo-
rems 1, 2, and 3 can be replaced by bounds of size Θ(mn log n) and
O(mn(log n + log wmax)) respectively.

Using larger populations, we have to pay for improving all members of the
population. This holds at least if we guarantee a large diversity in the popu-
lation. The lower bound of Theorem 1 holds with overwhelming probability.
Hence, we do not expect that large populations help. The analysis in the proof
of Theorems 2 and 3 is quite precise in most aspects. There is only one essential
exception. We know that the weight distance to wopt is decreased on average by
a factor of at most 1 − 1/n and we work under the pessimistic assumption that
this factor equals 1 − 1/n. For large populations or multi-starts the probability
of having sometimes much larger improvements may increase for many graphs.

It is more interesting to “parallelize” the algorithms by producing more child-
ren in parallel. The well-known algorithm (1+λ) EA produces independently λ
children from the single individual from the current population. The selection
procedure selects an individual with the smallest w-value (or w′-value) among
the parent and its children. In a similar way, we obtain λ-PRLS (parallel RLS)
from RLS. In the proofs of Theorem 2 and Theorem 3 we have seen that the
probability of a good step is Θ(n/m2). Choosing λ = �m2/n	, this probability is
increased to a positive constant. We have seen that the expected number of good
steps is bounded by O(n(log n + log wmax)). This leads to the following result.

Theorem 5. The expected number of generations until λ-PRLS or the
(1+λ) EA with λ := �m2/n	 children constructs a minimum spanning tree is
bounded by O(n(log n + log wmax)). This holds for the fitness functions w and
w′.

If we use the modified mutation operator defined above, the probability of a
good step is O(1/m) and we obtain the same bound on the expected number of
generations as in Theorem 5 already for λ := m.

One-point crossover or two-point crossover are not appropriate for edge set
representations. It is not possible to build blocks of all edges adjacent to a vertex.
For uniform crossover, it is very likely to create graphs which are not spanning
trees. Hence, only problem-specific crossover operators seem to be useful. Such
operators are described by Raidl and Julstrom (2003). It is difficult to analyze
heuristics with these crossover operators.

7 Conclusions

The minimum spanning tree problem is one of the fundamental problems which
are efficiently solvable. Several important variants of this problem are difficult,
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and evolutionary algorithms have a good chance to be competitive on these
problems. As a first step toward the analysis of evolutionary algorithms on these
problems, randomized local search and simple evolutionary algorithms have been
analyzed on the basic minimum spanning tree problem. The asymptotic worst-
case (with respect to the problem instance) expected optimization time has been
obtained exactly. The analysis is based on the investigation of the expected
multiplicative weight decrease (with respect to the difference of the weight of
the current graph and the weight of a minimum spanning tree).
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